On a Conjecture of F. Móricz and X. L. Shi

S. P. Zhou*
Depariment of Mathematics, Hangzhou University. Hangzhou, People's Republic of China
Communicated by D. S. Lubinsk.
Reccived May 4, 1988

Let $f(x, y)$ be a continuous function, 2π-periodic in each variable, in symbols $f \in C_{2 \pi \times 2 \pi}$. The paritial moduli of continuity of f are defined for $\delta>0$ by

$$
\omega_{x}(f, \delta)=\sup _{|x| \leqslant \delta} \max _{x, y}|f(x+u, y)-f(x, y)|,
$$

and

$$
\omega_{y}(f, \delta)=\sup _{|x| \leqslant \delta} \max _{x, y}|f(x, y+v)-f(x, y)| .
$$

Moreover, the Lipschitz class $\operatorname{Lip}(\alpha, \beta)$, where $\alpha, \beta \in(0,1]$, is defined to be

$$
\operatorname{Lip}(\alpha, \beta)=\left\{f \in C_{2 \pi \times 2 \pi}: \omega_{x}(f, \delta)=O\left(\delta^{x}\right) \quad \text { and } \quad \omega_{y}(f, \delta)=O\left(\delta^{\beta}\right)\right\} .
$$

The corresponding conjugate function of $f(x)$ is

$$
\begin{aligned}
f^{(1,1)}(x, y)= & \frac{1}{\pi^{2}} \int_{0}^{\pi} \frac{1}{2} \cot \frac{v}{2} d v \int_{0}^{\pi}(f(x+u, y+v)-f(x-u, y+v) \\
& -f(x+u, y-v)+f(x-u, y-v)) \frac{1}{2} \cot \frac{u}{2} d u .
\end{aligned}
$$

Concerning the approximation to continuous functions by Cesàro means of double conjugate series, F. Móricz and X. L. Shi [1] raised two conjectures, one of which is as follows.

Conjecture MS [1, p. 360, Conjecture 2]. There exists a function $f \in \operatorname{Lip}(1,1)$ such that the estimate

$$
\omega_{\sqrt{2}}\left(\bar{f}^{(1.1)}, \delta\right)=o\left(\delta \ln ^{2} \frac{1}{\delta}\right)(\delta \rightarrow+0)
$$

cannot hold.
We now show that the answer to Conjecture MS is affirmative.

[^0]Theorem. There exists a function $f \in \operatorname{Lip}(1,1)$ such that

$$
\overline{\lim }_{\alpha+0} \omega_{,}\left(\bar{f}^{(1.11}, \delta\right)\left(\delta \ln ^{2} \frac{1}{\delta}\right)>0 .
$$

The following lemmas are needed.
Lemma 1. If $|x| \geqslant n^{\prime}$ or $|x| \leqslant n{ }^{+}$, then the following estimate holds:

$$
\left|\sum_{n^{2}, 1}^{n^{i}} \frac{\sin k x}{k}\right|=O\left(\frac{1}{n}\right)
$$

Proof. Evidently

$$
\begin{equation*}
\left|\sum_{n^{2}+1}^{n^{3}} \frac{\sin k x}{k}\right| \leqslant|x| n^{3} \tag{1}
\end{equation*}
$$

on the other hand, by Abel transform

$$
\sum_{k=n^{2}+1}^{n^{3}} \frac{\sin k x}{k}=\sum_{n^{2}+1}^{n^{2}}\left(\frac{1}{k}-\frac{1}{k+1}\right) S_{k}(x)-\frac{1}{n^{2}+1} S_{n^{2}}(x)+\frac{1}{n^{3}} S_{n^{3}}(x),
$$

where

$$
S_{k}(x)=\sum_{j=1}^{k} \sin j x=\frac{\cos x / 2-\cos (k+1 / 2) x}{2 \sin x / 2}
$$

so

$$
\begin{equation*}
\sum_{k=1}^{n^{2}} \frac{\sin k x}{k^{2}} \leqslant \frac{\pi}{x} \frac{2}{n^{2}} \tag{2}
\end{equation*}
$$

in the case $|x| \leqslant n^{4}$ or $|x| \geqslant n^{\prime}$, applying (1) or (2), it follows that

$$
\left|\sum_{k-n^{2}+1}^{n^{3}} \frac{\sin k x}{k}\right|=O\left(n^{1}\right)
$$

Lemma 2. Let $m=n^{3}$.

$$
h_{m}(x, y)=\sum_{k}^{n^{2}} \frac{\cos k x}{k^{2}} \sum_{i=1}^{n} \frac{\sin j y}{j}
$$

then

$$
\begin{gather*}
\left|h_{m}(x+\delta, y)-h_{m}(x, y)\right|=O\left(\left|\sum_{k=n^{2}+1}^{n^{3}} \frac{\sin k x_{0}}{k}\right| \delta\right) . \quad x_{1} \in[x, x+\delta] \tag{3}\\
\omega_{1}\left(h_{m}, \delta\right)=O\left(n^{\prime} \delta\right) \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
C_{1} \delta \ln ^{2}(m+1) \leqslant(1)_{r}\left(\bar{h}_{m}^{(1)}, \delta\right) \leqslant C_{2} \delta \ln ^{2}(m+1), \quad 0<\delta \leqslant m^{1} \tag{5}
\end{equation*}
$$

Where $C_{i}(i=1,2)$ are positite constants independent of m.
Proof. Let

$$
\begin{aligned}
& \left|h_{m}(x+\delta, y)-h_{m}(x, y)\right| \\
& \quad \leqslant \delta\left|\sum_{k=n^{2}, 1}^{n^{3}} \frac{\sin k\left(x+\theta_{1} \delta\right)}{k}\right|\left\|\sum_{i=1}^{n} \frac{\sin j y}{j}\right\|, \quad 0 \leqslant \theta_{1} \leqslant 1,
\end{aligned}
$$

in view of $\sup _{n \geq 1}\left\|\sum_{k}^{n}, \sin j x / j\right\| \leqslant 3 \sqrt{\pi},(3)$ is valid. And

$$
\left|h_{m}(x, y+\delta)-h_{m}(x, y)\right|=O\left(\delta \sum_{k-n^{2}}^{\prime} \frac{1}{k^{2}} \sum_{i k=1}^{n} \cos j\left(y+\theta_{2} \delta\right) \|\right)=O\left(\delta n 1^{1}\right)
$$

where $0 \leqslant 0_{2} \leqslant 1,(4)$ is proved. At last, it is not difficult to see

$$
\bar{h}_{m}^{(1,1)}(x, y)=-\sum_{k=n^{2}+1}^{n^{2}} \frac{\sin k x}{k^{2}} \sum_{j=1}^{n} \frac{\cos j y}{j}
$$

so that there is a $\theta_{3} \in[0,1]$ such that for $\delta \in\left(0, m^{1}\right)$

$$
\begin{aligned}
\left|\bar{h}_{m}^{(1.1)}(\delta, 0)-\bar{h}_{m}^{(1.1)}(0,0)\right| & =\sum_{k=n^{2}+1}^{n^{3}} \frac{\cos k\left(\theta_{3} \delta\right)}{k} \sum_{j=1}^{n} \frac{1}{j} \\
& \geqslant \delta \cos 1\left(\ln \left(n^{3}+1\right)-\ln n^{2}-1\right) \ln (n+1) \\
& \geqslant C \delta \ln ^{2}(n+1) \geqslant C_{1} \delta \ln ^{2}(m+1)
\end{aligned}
$$

the converse inequality is evident, thus (5) follows.
Proof of Theorem. Let $n_{l}=2^{4^{4^{2}}}$,

$$
f(x, y)=\sum_{t=0}^{\infty} h_{m_{i}}(x, y)
$$

then

$$
\bar{f}^{(1,1)}(x, y)=\sum_{l=0}^{x} \bar{h}_{m_{l}}^{(1,1)}(x, y) .
$$

Now set $n_{k+1}^{1}<\delta \leqslant n_{k}{ }^{1}$,

$$
\begin{align*}
&|f(x+\delta, y)-f(x, y)| \leqslant\left|\sum_{1-6}^{k}\left(h_{m_{l}}(x+\delta, y)-h_{m_{i}}(x, y)\right)\right|+\omega_{v}\left(h_{n_{k}}, \delta\right) \\
&+\omega_{x}\left(h_{n_{k}, 1}, \delta\right)+\sum_{k+2}^{\infty} \omega_{x}\left(h_{n \prime}, \delta\right) \\
&= I_{1}+I_{2}+I_{3}+I_{4}, \\
& I_{4} \leqslant \sum_{1, k+2}^{\infty} \sum_{i-n_{1}^{2 ;+1}+1}^{n_{i}} \frac{1}{i^{2}}\left|\sum_{i=1}^{n_{i}^{\prime}} \frac{\sin j x}{j}\right| \leqslant 3 \sqrt{\pi} C n_{k+2}^{2 / 3}=o\left(n_{k+1}^{\prime}\right)=o(\delta), \tag{6}
\end{align*}
$$

by (3)

$$
\begin{align*}
& I_{2}=O(\delta) \tag{7}\\
& I_{3}=O(\delta) \tag{8}
\end{align*}
$$

From the mean value theorem for $1 \leqslant l \leqslant k-1$

$$
\begin{aligned}
& \left|\sum_{i=0}^{k}\left(h_{m /}(x+\delta, y)-h_{m_{i}}(x, y)\right)\right| \\
& \left.\quad \leqslant\left. C \sum_{i=\ldots}^{k}\right|_{k-n_{j}^{2}+1} ^{1} \frac{\sin k x_{0}}{k} \right\rvert\, \dot{n_{i}}, \quad x_{0} \in[x, x+\delta],
\end{aligned}
$$

Note that $\left(n_{i}{ }^{43}, n_{i}^{1: 2}\right) \cap\left(n,{ }^{43}, n_{i}^{13}\right)=\phi, i \neq j$, if x_{0} belongs to some $\left(n_{l_{0}}^{-4 / 3}, n_{l_{1}}^{-1 / 3}\right)$, then

$$
I_{1}=\left|h_{n_{l y}}(x+\delta, y)-h_{n_{(j)}}(x, y)+\sum_{\substack{i=1 \\ 1+l_{1}}}^{k}\left(h_{n_{i}}(x+\delta, y)-h_{n_{i}}(x, y)\right)\right|,
$$

applying Lemma 1 , we get

$$
\begin{equation*}
I_{1} \leqslant\left|\sum_{i=n_{i}^{2}+1}^{n_{10}} \frac{\sin i x_{0}}{i}\right| \delta+\dot{j} \sum_{i=1}^{\infty} n_{i}^{13}=O(\delta) . \tag{9}
\end{equation*}
$$

Combining (6)-(9), we have

$$
\begin{equation*}
\omega_{x}(f, \delta)=O(\delta) \tag{10}
\end{equation*}
$$

It is easy to get the estimate for $\omega_{,}(f, \delta)$. By (4)

$$
\begin{equation*}
\omega_{r}(f, \delta)=O\left(\delta \sum_{l-1}^{r} n_{l}^{1,3}\right)=O(\delta) \tag{11}
\end{equation*}
$$

Equations (10) and (11) imply that $f(x, y) \in \operatorname{Lip}(1,1)$. Meanwhile

$$
\begin{aligned}
\omega_{\mathrm{v}}\left(\bar{f}^{(1.1)}, n_{k}^{-1}\right) \geqslant & \omega_{v}\left(\bar{h}_{n_{k}}^{(1.1)}, n_{k}^{-1}\right)-\sum_{l=1}^{k} \omega_{v}\left(\bar{h}_{n_{l}}^{(1.1)}, n_{k}{ }^{1}\right) \\
& -2 \sum_{l=k+1}^{x} \sum_{i=n_{i}^{2,3}+1}^{n_{l}} \frac{1}{i^{2}} \sum_{i=1}^{n_{i}^{1.3}} \frac{1}{j}=J_{1}-J_{2}-J_{3} .
\end{aligned}
$$

Because of (5),

$$
\begin{aligned}
J_{1} & \geqslant C_{1} n_{k}^{-1} \ln ^{2} n_{k}, \\
J_{2} & \leqslant C_{2} n_{k}^{-1} \ln ^{2} n_{k} \sum_{l=1}^{k-1} \frac{\ln ^{2} n_{l}}{\ln ^{2} n_{k}} \leqslant C_{2} n_{k}^{1} \ln ^{2} n_{k} \sum_{l=1}^{k} 4^{1} 4 k l+F^{2} \\
& =O\left(n_{k}^{1} \ln ^{2} n_{k} 4^{3 k}\right), \\
J_{3} & \leqslant C \sum_{l=k+1}^{x} n_{l}^{23} \ln \left(n_{l}+1\right)=O\left(n_{k+1}^{2 / 3} \ln \left(n_{k+1}+1\right)\right) \\
& =o\left(n_{k}{ }^{1} \ln ^{2} n_{k}\right), \quad k \rightarrow \infty,
\end{aligned}
$$

altogether there exists a positive constant M for sufficiently large k such that

$$
\omega_{x}\left(f^{(1,1)}, n_{k}^{--1}\right) \geqslant M n_{k}^{-1} \ln ^{2} n_{k},
$$

i.e.,

$$
\varlimsup_{n \rightarrow \infty} \omega_{x}\left(f^{(1,1)}, n^{-1}\right) /\left(n^{1} \ln ^{2} n\right)>0 .
$$

References

1. F. Mórič and X. L. Shi, Approximation to continuous functions by Cesàro means of double Fourier series and conjugate series, J. Approx. Theory 49 (1987), 346-377.
2. A. Zygmund, "Trigonometric Series," Cambridge Univ. Press, Cambridge, 1959.

[^0]: * Present address: Department of Mathematics, Statistics and Computing Science. Dalhousie University, Halifax, NS, Canada B3H 3J5.

